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ACOUSTIC GRAVITY WAVE CHEMISTRY MODEL
FOR THE RAYTRACE CODE

INTRODUCTION

Nuclear explosions in the atmosphere are known to generate
large amplitude internal gravity waves which propagate great distances
from the explosion point and may cause modification of the ionosphere as
they pass by. Such modifications may result in substantial impact on HF
radio communications that use that part of the ionosphere as a reflecting
point. Typical impacts on HF transmissions include: introduction of
multipath, reduction in the MUF, and changes in absorption.

A detailed computer model has been generated to describe the
dynamics of the acoustic gravity wave from its creation to its propagation
through the ionosphere, The model is implemented in the MRC HF
communications computer code RAYTRACE!. This note describes enhancements
to this AGW model to inciude appropriate F-region electron density deple-

tion chenistry.
BACKGROUND

For distances far from a nuclear explosion little 1is known
about mechanisms causing the acoustic gravity wave. For distances closer
to the explosion our understanding is better. In the model developed by
dcCartor, et al., in Reference 1, available data is combined with the
general theoretical knowledge of the properties of the AGW to describe its

dynamics. Some of the most important properties of an AGW incorporated
into the RAYTRACE model and pertinent to the question of chemistry are:
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1. Long period, freely propagation gravity modes dominate the
distant disturbances launched from low altitude sources?.
These modes give a fairly constant period fluctuation at a
fixed range.

2. The Tlong period waves tend to bend around the earth's

surface. 3

3. The intensity of the AGW disturbances changes with alti-
tude. It tends to qrow exponentially with altitude up to
about 300 km and then decreases above 300 km due to viscous
dissipation.

4. lonospheric plasma driven by atmospheric motion is largely

confined to motion along the magnetic field lines.

5. The disturbances show a nearly sinusoidal variation with
one or two cycles."

6. AGW's show a nearly constant period for individual stations
which increased with increasing distances from the burst.

7. The initial motion of the ionosphere (up or down) seemed to
be fixed by the magnetic field orientation.

[n general, qood agreement was found between the wmodel and
existing data sets on gravity waves from nuclear explosions. Not included
in the implemented model however is the effect of chemistry on an electron
population when it 1is pushed into denser atmosphere by gravity wave
passage (property 4 above). F-region recombination chemistry is expected
to greatly deplete the electron density for waves that have sufficient
amplitude to push F-region electron parcels below about 200 km for tens of

minutes.
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CHEMISTRY MODEL INCORPORATION

The RAYTRACE computer program was initially developed by Jones
and Stephenson at the Department of Commerce® for studying HF radio
communications in natural environments and was adapted to handle nuclear
explosion disturbed environments by M. frolli of Mission Research Corpora-
tion. The programn traces rays through an anisotropic medium whose index
of refraction varies continuously in three dimensions. The program calcu-
lates ray paths by numerically integrating Hamilton's equations. It can
represent the refractive index by either the Appleton-Hartree or the Sen-
Wyller formula, and has several ijonospheric models for electron density
(including the AGW model), perturbations to the electron density , the
earth's magnetic field, and electron collision frequency.

Since the code performs numerical integration to trace radio
waves along a propagation path, it takes a number of small time steps in
high gradient regions normally encountered in disturbed ionospheres to
assure path correctness. Thus for each small spatial/time step the elec-
tron density and its gradient must be determined. This means that the AGW
electron density model must be called for each intagration point two or
more times. Typical single bounce HF transmission calculations through a
disturbed environment may require as many as one hundred thousand calls to
the AGW model. Because of this large number of calls to the model, it was
designed to run extremely fast. It did not contain any F-region chemistry
which would slow the code. There are conditions however such as multiple
bursts, large yields or a path close to a burst when plasma at high alti-
tudes is pushed down to altitudes where an electron depletion can occur in
one or two cycles of the AGW. inder such circumstances the incorporation
of F-region chemistry is necessary to give an accurate picture of the HF
propagation effects. For this reason it was felt that F-region chemistry
should be available as a model option for large yield cases where chemis-
try may be important.
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It is important however that the addition of the necessary
chemictry not add significant running time to the AGW model in RAYTRACE.
In fact because of the already substantial run time required to perform a
RAYTRACE calculation through a modestly disturbed environment, the chemis-
try was chosen to be exceedingly simple and include only the dominant
reactions pertinent to electron depletion. Also to avoid undo computa-
tional complexity only the nighttime chemistry (no sources) is presently
implemented in the code.

CHEMISTRY MODEL

The F-region chemistry reactions have been reduced to the

simple set of three reactions:

Ny, + 0 + NOY + N {1a)
D, + 0t =+ 0,4+ 0 (1b)
NOt + e > N+ O (2)

where the speed of the first two reactions is much slower than the last
and determines the final electron density, Ne' A solution for the elec-
tron density at any time t given the initial density Neo at t = 0 is given
by

Ny = N exp(- [adt) (3)

where a is the effective recombination coefficient given by

a =K [N2] + K2[0,] (4)




e

where

k1

1.3 x 10-12 (5)
and

k2

2. x 10~V (6)

Since the electron parcel is moving up and down with the motion
of the gravity wave, the [N,] and [0,] densities are functions of time.

The procedure developed to estimate densities has been to initi-
ally fit the neutral [Nz] and [07] densities with an exponential function
of height h betwe2n the regions of 100 and 500 km as:

AeBh(t)

i

[(N2]

CeDh(t)

1]

[02)

The recombination coefficient then becomes

)+ k2 et

(9)
The height, h, is the instantaneous altitude of the air parcel at time t
and is given for a single burst by

n(t) = 82 Sinlw(t-x/c)} + Zg (10)

where me is the maximum displacement of the parcel at distance x from the
burst: Zo is the initial height of the air parcel and w is 2nZ/1Bx, For
the single burst case using equations (9) and (10}, the inteqral in equa-

tion (3) can be carried out analytically for the case where the wave has
qone through two cycles. The result for that case is

. .+ p——
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BZ
a = [ a(t)dt = 2 exp[-K)he %2nlo(Baz, ]l

+ exp[-KZCeDZOZHIo(DAme)]

where lg 1s the zero order Bessel function with imaginary argument.

The result can be interpolated to a time t between zero and two

cycles of the AGW by using the following approximation:

t
[ adt = “_‘(_t_‘;.:/_c) a ¥ Alcos{w(t-x/c)-1]cosé sin®  (12)
0

where A is given by the approximate value determined by fitting eqguation
(12) to exact calculations as

A = .08 L (13)

¢ is the maanetic azimuth and 8 is the nagnetic dip angle.

The wingle burst model for integral of a{t) agrees to within a
few percent of the exact value determined by direct time integration of
the dynamical equations. The model runs very quickly requiring only the
evaluation of equations {11) and (12).

MULTIBURST MODEL CHEMISTRY

The above simple model is accurate for the single burst model
since the motion of the electron parcel can be closely approximated by a

single sinusoidal function that can then be integrated analytically. For
the multiburst case the mation of the electron parcel is the result of a

1n
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minutes after the passage of a very large amplitude gravity wave. The
wave resulted from a combination of 100 MT and 30 MT explosions detonated
in a region about the zero tic on the figure. (Details of the explosion
scenario have been discussed in Reference 1.)

Figure 4 shows critical frequency contours without the effect
of chemistry. Figure 5 shows the same region and time but with the F

region chemistry included. The chemistry model assumes a night time iono-
sphere with no electron production sources. It is seen in Figure 10 that
large regions of electron depletion (small critical frequency) remain
after the passage of the gravity wave. These regions persist for the
entire night. As the wave continues to move outward from the explosion
point it continues to create an expanding depletion region. This depletion
region resulting from the inclusion of chemistry considerably simplifies
the disturbed electron density height profile that would have been present
from the passage of the gravity wave without chemistry (Figure 4). The
simplified electron density height profile may reduce the absorption and
multipath but may tend to increase the doppler shift in the HF signal.

Electron density time histories for the multiburst scenario
used to generate Fiqures 4 and 5 are given in Figures 6 through 11 for
slices at three heights. Figures 6, 7 and 8 show electron density time
histories at 250, 350 and 450 km respectively with the chemistry turned
on. Figures 9, 10, and 11 show the same slices but without chemistryv, At
250 km altitude electron density is entirely depleted after the passage of
the gravity wave. At higher altitudes there is less affect on the elec-
tron density resulting in an occasional depletion hole,

SINGLE BURST EXAMPLE

The effect of the passage of a gravity wave through a section
of the ionosphere can be seen somewhat more clearly by looking at the

18
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The amplitude value, <Alpx>, is the fregquency weighted mean amplitude of

events

L) (16)

is the minimum of the wi's for the interval, and Xnax is the distance
associated with the W, min imum.

An example of the motion of a parcel during multiburst scenario
is given in Figure 1. Three avents were interacting; they had yields of
10 Mt, 1200 km due north of the point of interest, 15 Mt, 1500 km nearly
due south, and 5 Mt 2000 km at 60 degrees azimuth.

The approximate fit to the parcel height using the multiburst
model is given in Figure 2. In general the fit is quite good except for
a single region near 5000 seconds where equal and nearly opposite motion
drive the parcel in a way that cannot be well predicted by the simplified
model.

Figure 3 shows the exact integral of a(t) (eq(12)) for the
multiburst case. The approximate integral is given by the X marks for
selected times. The fit of the integral is more accurat~ than our know-
ledge of either the neutral atmospheric model or the simplified chemistry
model.

COMPARISON OF AGW ENVIRONMENTS WITH AND WITHOUT CHEMISTRY

Examples of the effect of F-region chemistry in the wake of a

large amplitude gravity wave are seen by examining Figures 4 and 5.
Figure 4 shows the critical frequency contours at 15 minutes and 30

12




superposition of multiple sinusoidal functions that in general will have
distinct amplitudes, periods, phases and arrival times at the point of
interest. Thus for multiple bursts the model becomes somewhat wore
complicated but can still be made to maintain most of the character of
single burst chemistry model.

The primary consideration in the multiburst case is to get an
accurate time history of the vertical motion of the parcel at the point of
interest. This motion which is the result of the passage of the multiple
AGW's past the point of interest can be expressed as the sum of sin? waves
i.oe.,

N
B
h(t) - eﬁzlAmeismwi(t - xi/c) + 7 (14)

where index, 1, runs over all bursts that have

X i
— <t < (= 1) (15)

c - o VA

Using equation (14) in equation (9) results in an integral that cannot be
evaluated exactly. A procedure was adopted where the summation is aaprox-
imated over a few discrete intervals over which the integral can be done
analytically. The intervals are determined by the arrival times of 'he
gravity waves from the various bursts and the departure of the waves.
Essentially a new interval is created when either a wave arrives or ieaves
the parcel region of interest. In a given interval the parcel position is
given by

h(t) = <aZ_»> sinﬂ(xmax) + 2
mx C

| o o
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effect of the gravity wave from a single bur<t.  Figures 12 and 13 show
contours of critical frequency without 4and with chemistry respectively
after the passage of a gravity wave 30 minutes after a 4 Mt surface explo-
sion. As in the multiburst case the ionosphere is greatly disturbed. The
chemistry has the effect of depleting the electrons below about 250 km as
seen in Figure 13.

The effect on propagation through the two environments shown in
Figures 12 and 13 is illustrated in Fiqures 14 and 15 respectively by a
fan of rays at 15 MHz propagating in a southward direction from a trans-
mitter located at the burst point. To avoid a confusing number of lines
on one plot, only the rays are plotted and not the critical frequency
contours. Propagation paths can be correlated to environment by overlaying
the ray paths on the appropriate Figure 12 or 13. Contrary to our initial
expectations, the introduction of chemistry does not greatly improve the
number of HF radio waves that propagate, although the environment is
greatly simplified and many gradients are removed. The introduction of
chemistry does improve somewhat the distance of waves that do propagate

merely because it moves the reflection layer higher.

The effect of the chemistry is further illustrated by electron
density height profiles shown in Figures 16 and 17 for the single burst
scenario. The profiles shown are considered nighttime profiles that have
densities normally seen in daytime. They are taken at a point 1000 km
snuth ~f the burst point at times Tabeled on the figures. £ach profile at
succording times is offset by 10 from the previous time to accommndate
p'otting many times on a single frame. The profiles that result from the
pass e of the gravity wave when no chemistry is running are fairly smooth
witn height.  Profiles that result when chemistry is running have large
reductions in density between 100 km ( the bottom of the model) and about
250 km. The straight vertical line in the profiles taken with chemistry
indicate that the electron density is pegged at 1000 cm**-3,
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Figure 12.

Contours of critical frrguency from passage of a gravity wave
from a single 4 Mt explosion. No chemistry calculations are
performed.
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Figure 13. Same as Figure 12 except with chemistry turned on.




Figure 14.

Figure 15.

T

2000

A fan of HF propagation rays at 15 MHz transmitted from ground
zero through the electron environment described in Figure 12.

1000 1500

2000

Same as Figure 14 except that rays are propagating through the
enviromment in Figure 13.
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CHEMISTRY MODEL DEFICIENCIES

A major drawback of the model as it is now implemented is that
the chemistry model is very simple and the ionosphere is not always stable
to application of the model. This defect can be overcome by putting an
jonosphere into the code and running it for a sufficiently long simulation
time to bring the ionosphere to equilibrium and then using this ionosphere
as the one through which the gravity wave propagates. This method has the
defect that the exact ionospheric conditions desired may not be simulated.
A more correct procedure would be to modify tie chemistry such that the
user-specified ionosphere is left stable. This procedure is considerably
more difficult than modifying the ionosphere to fit the simple chemistry
and it may also add considerable run time to a RAYTRACE calculation.

IMPLEMENTATION OF AGW CHEMISTRY INTO RAYTRACE CODE

The RAYTRACE code is organized in a modular f{avhidn so that cal-

culations can be performed using input-selected environment models for
electron density and electron density perturbations.

There 1is only one input flag that needs to be set to turn on
the AGW chaenisiry model and that is word 103 in the "W" array which is
Toaded on input (see the RAYTRACE documentation,reference 6). The inter-
nal flag name is CHMFLG. AGW chemistry is turned on when W103 (CHMFLG) is

set to 1. No other parameters or data are required to run the AGW chemis-
try.
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